Computer Awareness

Part 6

- Funsta Team

Lets Start

Computer Awareness

Part 1 Intro/Generation/ Classification of Computers

Part 2 Computer Architecture \& Memory
Part 3 Computer Hardware
Part 4 Computer Software and System Utilities
Part 5 Number System

Sl. No	Topic	Page Number
1	Computer Codes	4
2	Logic Gates	9

Computer Codes

Back to

Binary Coded Decimal (BCD)

$B C D$ is developed by IBM corporation

$$
\begin{aligned}
& \text { Back to } \\
& \text { Computer } \\
& \text { Code }
\end{aligned}
$$

American Standard Code for Information Interchange (ASCII)

This characters are represented by 7 bits

This can handle 2^{7} bit which means 128 characters.

The new edition ASCII -8, has 2^{8} bits and can handle 256 characters are represented from 0 to 255 unique numbers.
$\langle\bullet \cdot \quad$ Out of this 33 are non-printing, mostly obsolete control characters that affect how text is processed

95 are printable characters
Example: An uppercase "A" is represented by the decimal number 65

Back to Computer Code

Extended Binary Coded Decimal Interchange Code (EBCDIC)

$\langle\bullet \bullet \quad$ This is similar to ASCII Code with 8 bit representation.
$\langle\bullet \bullet$ This coding system is formulated by International Business Machine(IBM).
$\langle\bullet \cdot \circ \quad$ The coding system can handle 256 characters.

Back to Computer Code

Unicode

Unicode is a universal character encoding standard.
〈○• It defines the way individual characters are represented in text files, web pages, and other types of documents.

This is 16 bit code and can handle 65536 characters
Unicode scheme is denoted by hexadecimal numbers.

Logic Gates

Logic gates are the basic building blocks of any digital system.
It is an electronic circuit having one or more than one input and only one output.
The relationship between the input and the output is based on a Certain Logic.

Based on this, logic gates are named as AND gate, OR gate, NOT gate etc.

AND Gate

ca funsta

The AND operator is defined in Boolean algebra by the use of the dot (.) operator.

It is similar to multiplication in ordinary algebra.

The AND operator combines two or more input variables so that the output is true only if all the inputs are true

AND operation is expressed as: $\mathrm{X}=\mathrm{A}$. B

\mathbf{A}	\mathbf{B}	\mathbf{X}
$\mathbf{0}$	0	0
$\mathbf{0}$	1	0
$\mathbf{1}$	0	0
$\mathbf{1}$	1	1

Back to Logic Gates

OR Gate

The plus sign is used to indicate the OR operator.
$\langle\bullet \cdot\rangle \quad$ The OR operator combines two or more input variables so that the output is true if at least one input is true.
$<\cdots$ OR operation is expressed as: $\mathrm{X}=\mathrm{A}+\mathrm{B}$

A	B	X
0	0	0
0	1	1
1	0	1
1	1	1

Back to Logic Gates

Inverter or NOT Gate

The NOT operator has one input and one output.
The input is either true or false, and the output is always the opposite, that is, the NOT operator inverts the input

The NOT operator is represented algebraically by the Boolean expression: $\mathrm{X}=\overline{\mathrm{A}}$ or A^{\prime}

A	$\mathrm{X}=\mathrm{A}^{\text {? }}$
$\mathbf{0}$	1
$\mathbf{1}$	0

NAND Gate

$\langle\bullet \cdot \quad$ It is also called Universal Gates.
$\langle\bullet \bullet \quad$ The NAND is the combination of NOT and AND.
$\langle\bullet \bullet \quad$ The NAND is generated by inverting the output of an AND operator.
$\langle\bullet \cdot \quad$ The algebraic expression of the NAND function is:, $\mathrm{X}=\overline{(\mathrm{A} . \mathrm{B}})=\overline{\mathrm{A}}+\overline{\mathrm{B}}$

\mathbf{A}	\mathbf{B}	\mathbf{X}
$\mathbf{0}$	0	1
$\mathbf{0}$	1	1
$\mathbf{1}$	0	1
$\mathbf{1}$	1	0

Back to Logic Gates

NOR Gate

$\langle\bullet \cdot$ It is also called Universal Gates.
$\langle\bullet \bullet \quad$ The NOR is the combination of NOT and OR.
$\langle\bullet \bullet$ The NOR is generated by inverting the output of an OR operator
$\langle\bullet \bullet \quad$ The algebraic expression of the NOR function is: $\mathrm{X}=\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$

\mathbf{A}	\mathbf{B}	\mathbf{X}
$\mathbf{0}$	0	1
$\mathbf{0}$	1	0
$\mathbf{1}$	0	0
$\mathbf{1}$	1	0

Exclusive OR or XOR Gate

The XOR (exclusive - OR) gate acts in the same way as the logical "either/or."
The output is "true" if either, but not both, of the inputs are "true". The output is "false"
If both inputs are "false" or if both inputs are "true".
$\langle\bullet \cdot\rangle$ The algebraic expression of the NOR function is: $\mathrm{X}=\mathrm{A} \oplus \mathrm{B}=\overline{\mathrm{A}} \mathrm{B}+\mathrm{A} \overline{\mathrm{B}}$

\mathbf{A}	\mathbf{B}	\mathbf{X}
$\mathbf{0}$	0	0
$\mathbf{0}$	1	1
$\mathbf{1}$	0	1
$\mathbf{1}$	1	0

Back to Logic Gates

Exclusive NOR or XNOR Gate

The XNOR (exclusive - NOR) gate is a combination XOR gate followed by an inverter.

Its output is "true" if the inputs are the same, and "false" if the inputs are different.
In simple words, the output is 1 if the input are the same, otherwise the output is 0 .
The algebraic expression of the XNOR function is: $\mathrm{X}=\overline{\mathrm{A} \oplus \mathrm{B}}$

$$
=\mathrm{AB}+\overline{\mathrm{A}} \overline{\mathrm{~B}}
$$

\mathbf{A}	\mathbf{B}	\mathbf{X}
$\mathbf{0}$	0	1
$\mathbf{0}$	1	0
$\mathbf{1}$	0	0
$\mathbf{1}$	1	1

Back to Logic Gates

Recap Session

Complete the truth table below for the AND, NAND, OR, NOR, XOR, and XNOR functions.

\mathbf{X}	\mathbf{Y}	$\mathbf{X} \cdot \mathbf{Y}$	$\mathbf{(X \cdot \mathbf { Y }} \mathbf{'}^{\mathbf{\prime}}$	$\mathbf{X}+\mathbf{Y}$	$\mathbf{(X + \mathbf { Y }) ^ { \prime }}$	$\mathbf{X} \oplus \mathbf{Y}$	$\mathbf{(X \oplus \mathbf { Y }) ^ { \prime }}$
0	0						
0	1						
1	0						
1	1						

The logic gates for these functions are shown below:
AND

$x-\operatorname{NOR}_{y}^{x}-(x+y)^{\prime}$
XOR

XNOR

 Logic Gates

'Hurrah!'

We completed this section.

Next Section

