Computer Awareness

Part 5

- Funsta Team

Lets Start

Computer Awareness

$\begin{array}{ll}\text { Part } 1 & \text { Intro/Generation/ Classification of } \\ \text { Part } 2 & \text { Computer Architecture \& Memory }\end{array}$
 Part 3 Computer Hardware
 Part 4 Computer Software and System Utilities

Sl. No	Topic	Page Number
1	Number System	4
2	Conversion Table	10
3	Conversion	11

NUMBER SYSTEM

Number System

ca funsta

The technique to represent and work with numbers is called Number System.

Decimal Number system is the most common number system

Types of Number System:
Decimal Number System
Binary Number System

Octal Number System

Hexadecimal Number System

Decimal Number System

It consists of 0,1,2,3,4,5,6,7,8,9(10 digits).
$\langle\circ \bullet$ It is also called the base 10 system because it makes use of 10 digits.
$\langle\bullet \bullet$ The number base is also called the radix

It is also called the positional value system or the place value notation in which the value of a digit depends on its position.

Binary Number System

There are only two digits in the Binary system, namely, 0 and 1.

The numbers in the binary system are represented to the base 2 and the positional multipliers are the powers of 2 .

It is also called as Base 2 system

The left most bit in the binary number is called as the Most Significant Bit (MSB) and it has the largest positional weight.

The right most bit is the Least Significant Bit (LSB) and has the smallest positional weight.

Back to
Main Flowchart

Octal Number System

$\langle\bullet \bullet \quad$ Octal number system uses digits $0,1,2,3,4,5,6$ and 7 (8 digits).
〈••〉 Each octal digit has its own positional value or weight as a power of 8 .

It is also called as Base 8 system

Hexadecimal Number System

A hexadecimal number is represented using base 16
$\langle\bullet \bullet$ Hexadecimal or Hex numbers are used as a shorthand form of binary sequence.
$\langle\bullet \bullet$ Since 16 symbols are used, 0 to F , the notation is called hexadecimal
$\langle\bullet \cdot \quad$ The first 10 symbols are the same as in the decimal system, 0 to 9 and the remaining 6 symbols are taken from the first 6 letters of the alphabet sequence, A to F , where A represents $10, \mathrm{~B}$ is $11, \mathrm{C}$ is $12, \mathrm{D}$ is $13, \mathrm{E}$ is 14 and F is 15 .

Back to
Main Flowchart

Conversion Table

Binary, Octal, Hexadecimal equivalent of Decimal Numbers

Decimal	Binary	Octal	Hexadecimal		Decimal	Binary	Hexadecimal
0	0000	000	0000		8	1000	0008
1	0001	001	0001		9	1001	0009
2	0010	002	0002		10	1010	A
3	0011	003	0003				
4	0100	004	0004	11	1011	B	
5	0101	005	0005	12	1100	C	
6	0110	006	0006	13	1101	D	
7	0111	007	0007				
			14	1110	E		
				1111	F		

Octal

$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$

Hexa Decimal

$\mathbf{8}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$

Back to Index

CONVERSION

Decimal to Binary

Convert (216) ${ }_{10}$ into Binary

2	216
2	108-(0)
2	54-(0)
2	27-(0)
2	13-(1)
2	6-(1)
2	3-0
	1 -1

$$
(216)_{10}=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Decimal to Octal

Convert (216) ${ }_{10}$ into Octal

$$
(216)_{10}=(330)_{8}
$$

Decimal to Hexa Decimal

Convert (216) 10 into Hexa Decimal

$$
16|216| \quad(216)_{10}=(D 8)_{16}
$$

Binary to Decimal

Convert (11011000) $)_{2}$ into Decimal

$$
\begin{aligned}
(11011000)_{2}= & \left(2^{7} \times 1\right)+\left(2^{6} \times 1\right)+\left(2^{5} \times 0\right)+\left(2^{4} \times 1\right) \\
& +\left(2^{3} \times 1\right)+\left(2^{2} \times 0\right)+\left(2^{1} \times 0\right)+\left(2^{0} \times 0\right) \\
= & 128+64+16+8 \\
= & 216
\end{aligned}
$$

Binary to Octal

Convert (11011000) $)_{2}$ into Octal

$(11011000)_{2}=011011000$

$$
\begin{aligned}
& 011=\left(0 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)=3 \\
& 011=\left(0 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)=3 \\
& 000=\left(0 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(0 \times 2^{0}\right)=0
\end{aligned}
$$

Binary to Hexa Decimal

Convert (11011000) into Hexa Decimal

$$
\begin{gathered}
(11011000)_{2}=(? \quad)_{16} \\
11011000 \\
1101=\left(2^{3} \times 1\right)+\left(2^{2} \times 1\right)+\left(2^{1} \times 0\right)+\left(2^{0} \times 1\right)=13=D \\
1000=\left(2^{3} \times 1\right)+\left(2^{2} \times 0\right)+\left(2^{1} \times 0\right)+\left(2^{0} \times 0\right)=8=8 \\
=D 8
\end{gathered}
$$

Octal to Decimal

Convert (330) into Decimal

(216) $)_{10}$

Octal to Binary

Convert (330) into Binary 330
$3=011$
$3=011$
$0=000$

$$
(330)_{8}=(011011000)_{2}
$$

Octal to Hexa

Convert (330) into $_{8}$ Hexa

```
330=011011000
        3 0
    = 0 1101 1000
            0 13 8
    = \underline{0}13}\underline{8
    = \underline{D}8
```


Hexa Decimal to Decimal

Convert (D8) ${ }_{16}$ into

$$
\begin{aligned}
(D 8)_{16} & =\left(16^{1} \times 13\right)+\left(16^{0} x\right) \\
& =216
\end{aligned}
$$

Hexa Decimal to Binary

Convert (D8) ${ }_{16}$ into Binary

$$
\begin{aligned}
(\mathrm{D} 8)_{16} & =(\mathrm{D}) \mid(8) \\
& =1101 \mid 1000 \\
& =(11011000)_{2}
\end{aligned}
$$

Hexa Decimal to Octal

Convert (D8) ${ }_{16}$ into Octal

$$
\begin{aligned}
(\mathrm{D} 8)_{16} & =(11011000)_{2} \\
& =011|011| 000 \\
& 3030 \\
& =(330)_{8}
\end{aligned}
$$

Extra point for Funsta Family

Decimal

 $\left\{\begin{array}{c}\text { Binary } \\ \text { Hexa Decimal } \\ \text { Octal }\end{array}\right.$ Decimal Hexa Decimal Octal

Hexa Decimal

Binary
421
8421

'Hurrah!'

We completed this section.

Next Section

coming
soon...

