

Computer Awareness

- Part 1 Intro/Generation/ Classification of Computers
- Part 2 Computer Architecture & Memory

Subscribe

Part 3 Computer Hardware

Liwin's CA Funsta

Part 4 Computer Software and System Utilities

Lets move on to Next Part

Sl. No	Topic	Page Numbe	
1	Number System	4	
2	Conversion Table	10	
3	Conversion	11	

🕞 /Liwin's CA Funsta

CA FUNSTA

🕞 /Liwin's CA Funsta

f

Number System

- The technique to represent and work with numbers is called **Number System**. $\langle \cdots \rangle$
- $\langle \cdots \rangle$

Decimal Number system is the most common number system

Types of Number System:

Decimal Number System

Binary Number System

Octal Number System

Hexadecimal Number System

Back to Main Flowchart

Subscribe

Decimal Number System

- **Consists of 0,1,2,3,4,5,6,7,8,9(10 digits).**
- **Constant** It is also called the base 10 system because it makes use of 10 digits.
- **Characteris** The number base is also called the radix
- **Vert** It is also called the positional value system or the place value notation in which the value of a digit depends on its position.

Back to Main Flowchart

🕞 /Liwin's CA Funsta

Binary Number System

- **Characteristic Structure** There are only two digits in the Binary system, namely, 0 and 1.
- **Characteristic Set 5** The numbers in the binary system are represented to the base 2 and the positional multipliers are the powers of 2.
- **C** It is also called as Base 2 system
- **Characteristic State** The left most bit in the binary number is called as the **M**ost **S**ignificant **B**it (MSB) and it has the largest positional weight.
- $\langle \cdots \rangle$
 - The right most bit is the Least Significant Bit (LSB) and has the smallest positional weight.

Back to Main Flowchart

Octal Number System

Octal number system uses digits 0,1,2,3,4,5,6 and 7 (8 digits).

- Each octal digit has its own positional value or weight as a power of 8.
- **(is** also called as Base 8 system

Back to Main Flowchart

🕞 /Liwin's CA Funsta

Hexadecimal Number System

- A hexadecimal number is represented using base 16
 - Hexadecimal or Hex numbers are used as a shorthand form of binary sequence.
- Since 16 symbols are used, 0 to F, the notation is called hexadecimal
 - The first 10 symbols are the same as in the decimal system, 0 to 9 and the remaining 6 symbols are taken from the first 6 letters of the alphabet sequence, A to F, where A represents 10, B is 11, C is 12, D is 13, E is 14 and F is 15.

Back to Main Flowchart

 $\langle \cdots \rangle$

 $\langle \cdots \rangle$

🕞 /Liwin's CA Funsta

Conversion Table

Binary, Octal, Hexadecimal equivalent of Decimal Numbers

Decimal	Binary	Octal	Hexadecimal	Decimal	Binary	Hexadecimal
0	0000	000	0000	8	1000	0008
1	0001	001	0001	9	1001	0009
2	0010	002	0002	10	1010	А
3	0011	003	0003	11	1011	В
4	0100	004	0004	12	1100	С
5	0101	005	0005	13	1101	D
6	0110	006	0006	14	1110	E
7	0111	007	0007	15	1111	F

Octal		
4	2	1

Hexa Decimal

8	4	2	1

Back to Index

Subscribe

🗩 /Liwin's CA Funsta

🕞 /Liwin's CA Funsta

🗩 /Liwin's CA Funsta

Decimal to Binary

Convert (216)₁₀ into Binary

 $(216)_{10} = (1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0)_2$

🗩 /Liwin's CA Funsta

Decimal to Octal

Convert (216)₁₀ into Octal

$$(216)_{10} = (330)_8$$

🗩 /Liwin's CA Funsta

Decimal to Hexa Decimal

Convert (216)₁₀ into Hexa Decimal

$$(216)_{10} = (D8)_{16}$$

/Liwin's CA Funsta

Binary to Decimal

Convert (11011000)₂ into Decimal

$(11011000)_2 = (2^7 \times 1) + (2^6 \times 1) + (2^5 \times 0) + (2^4 \times 1)$ $+ (2^3 \times 1) + (2^2 \times 0) + (2^1 \times 0) + (2^0 \times 0)$

= 128 + 64 + 16 + 8

= 216

🕞 /Liwin's CA Funsta

Binary to Octal

CA FUNSTA UNBOX THE NEW WAY OF LEARNING

Convert (11011000)₂ into Octal

 $(11011000)_2 = 011011000$

$$011 = (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 3$$

$$011 = (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0}) = 3$$

 $000 = (0 \times 2^{2}) + (0 \times 2^{1}) + (0 \times 2^{0}) = 0$

Back to Conversion

Subscribe

(330)₈

/Liwin's CA Funsta

Binary to Hexa Decimal

Convert $(11011000)_2$ into Hexa Decimal $(11011000)_2 = (?)_{16}$ $1101 \ 1000$ $1101 = (2^3 \times 1) + (2^2 \times 1) + (2^1 \times 0) + (2^0 \times 1) = 13 = D$ $1000 = (2^3 \times 1) + (2^2 \times 0) + (2^1 \times 0) + (2^0 \times 0) = 8 = 8$ = D8

> Back to Conversion

🕞 /Liwin's CA Funsta

/Liwin's CA Funsta

Octal to Decimal

CA FUNSTA UNDOUT THE NEW WAY OF LEARNING

Convert (330)₈ into Decimal

/Liwin's CA Funsta

Octal to Binary

Convert (330)₈ into Binary

330

- 3 = 011
- 3 = 011
- 0 = 000

$(330)_8 = (011011000)_2$

🕞 /Liwin's CA Funsta

Octal to Hexa

Convert (330)₈ into Hexa

Back to Conversion

🕞 /Liwin's CA Funsta

🕞 /Liwin's CA Funsta

Hexa Decimal to Decimal

Convert (D8)₁₆ into

$(D8)_{16} = (16^1 \times 13) + (16^0 \times)$ = 216

🕞 /Liwin's CA Funsta

Hexa Decimal to Binary

Convert (D8)₁₆ into Binary

- $(D8)_{16} = (D) | (8)$
 - = 1101 | 1000
 - = (11011000)₂

🕞 /Liwin's CA Funsta

Hexa Decimal to Octal

Convert (D8)₁₆ into Octal

 $(D8)_{16} = (11011000)_2$ = 011 | 011 | 000 3 3 0

Back to Conversion

 $(330)_{8}$

🕞 /Liwin's CA Funsta

'Hurrah!' We completed this section.

/Liwin's CA Funsta

💧 / Liwin's CA Funsta

Subscribe